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CALCULATION OF THE VOLT--AMPERE CHARACTERISTICS OF A NONINDEPENDENT 

VOLUMETRIC ELECTRICAL DISCHARGE 

V. V. Aleksandrov and V. N. Diesperov UDC 537.5 

An analysis of a nonlndependent volumetric electrical discharge in the phase plane makes 
it possible to describe the structure of this phenomenon in a very simple manner and construct 
the vol~--ampere characteristics over a broad range of parameters. 

1. A volumetric electrical discharge in a dense gas induced by hard ultraviolet rayss 
x rays, reactor radiation, or a beam of fast electrons is widely used in the design of operat- 
ing chambers of high-powered electrolonlzatlon gas lasers [i, 2] and hlgh-current switching 
devices [3]. This discharge can be simulated by a plane capacitor which has fairly high volt- 
age applied to its plates. The space between the electrons is filled with a gas which has a 
temperature of the same order as room temperature and is weakly ionized as a result of an 
external source, e.g., an electron beam. Given a number of assumptions, which arereasonably 
well satisfied for modern lasers [i, 2, 4], a nonindependent stationary volumetric electric 
discharge can be described by the following system of equations for the electrons and ions 
moving in a fixed gas consisting of neutral particles: 

d~ = dx = 

dE = 4~  I e I (n~ - -  ni),  ]~ = ~ n ~ E / p ,  1i = 9 ~ n i E / p ,  
d~ (1.1) 

L 

j~ (o) = ~j~ (o), i~ (~) = o, .t' Kdx  = U. 
�9 0 

Here the coordinate x is measured from the cathode (x = 0) to the anode (x = i); Je and 
Ji, densities of the electron and ion currents; n e and n i, electron and ion densities. The 
electron and ion currents vary as a result of the impact ionization of neutral particles by 
electrons, which is proportional to the density of the electron current multiplied by the 
impact generation function u, to the external ionization, whose intensity q will be assumed 
to be a known quantity, and to the binary recombination, equal to the product neni, with a 
proportionality constant B, known as the first Townsend coefficient. In the drift approxima- 
tion under consideration, the currents Je and Jl are proportional to the intensity E of the 
electric field, where ~e and ~i are the mobilities of the electrons and the ions [5] and p is 
the pressure of the neutral gas. The equation for the field E, in which e denotes the charge 
of the electron, closes this system. The ion bombardment of the cathode results in the emis- 
sion of electrons from the cathode, which is characterized by the value 7, the second Townsend 
coefficient. The ion current at the anode is equal to zero. A potential difference U is 
maintained across the plates of the capacitor. 

For the impact generation function u the two most widely used approximations are the fol- 
lowing [5]: 
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= A p ( E ~  - -  B ) 2 0 ( E @  - -  B);  ( 1 . 2 )  

= Cp exp (--Dp/E), (1.3) 

where 8 is t h e  Heaviside function. For nitrogen, for example, A = 1.17.10 -~ cm.mm Hg.V -a, 
B = 32.2 V.cm-t-mm Hg, C = 5.7 cm-t.mm Hg -I, D = 260 V-ram Hg-*.cm -~. The mobility of the 
ions and electrons and the coefficient of the binary recombination will be taken to be con- 
stant: gi = 2.10' cma.mm Hg.V-X.cm -*, ~e = 3.10" cma.mm Hg.V -x, 8 = 2.10-' cm'.sec -I. The 
usual value of 7 in the nonlndependent volumetric discharge regime is on the order of !0 -2. 

By the "direct problem" we shall mean the problem of finding the solution of the system 
(I.I) from the given values of p, q, and U. We formulate the inverse problem. Adding the 
first two equations and integrating, we obtain the first integral of system (1.1) 

Jo  = ]e + / i  = cons t ,  ( 1 . 4 )  

which expresses the law of conservation of total current. The inverse problem consists in 
solving (i.I) on the basis of given values of p, q, and Jo. Another possible formulation of 
the inverse problem will be described below. 

The equation U = U(Jo) will be called the volt--ampere characteristic. The numerical 
calculation of volt-ampere characteristics in the physical plane on the basis of system (l.1) 
for constant q, p has been carried out in [1, 2, 4, 6, 7], For a given Jo, at some distance 
x from the cathode, the value of the intensity E was specified. Then, by a choice of x and 
E, the investigators found the integral curve satisfying the boundary condition at the 
cathode. 

A comparison of the calculated volt--ampere characteristics of nonindependent discharges 
in nitrogen at atmospheric pressure with experimental characteristics showed good agreement 
in the hlgh-current range [i, 2]. 

We can convert the initial equations (I.I) to dimensionless equations by using the 
formulas 

t ! . ! g i 

z = g x ' ,  n~ = none ,  n i =  non~,  J o =  ]~odo, ]~ = ]eo]~.Jo, 

. . . . .  (1 5 )  
]i  = l e . h J o ,  E = E o E '  , leo = ~t~noEo/Po, P = POP',  

q = qo~' ,  ,~. = V q . l f ~ ;  

where po and qo are the pressure and volumetric frequency of ionization by an external source 
that are characteristic for a class of physical devices; no is the concentration of electrons 
or ions in the positive column of the volumetric discharge for a volumetric ionization value 
of q. The characteristic value Eo of the electric field intensity will be defined below, 

Let us describe the dimensionless equations, making use of the integral (1.4) and omit- 
ting the primes: 

dJ,~.~, _ i,pA ,9 (~,E/p) + rR ~:~ ' (1 .6)  

d E  (t -I- ~t) 2 o 
d:,: - -  [ao l : - -  []" - -  1/(t  -1- ~t)], ] i  = I - -  ]e; 

1 

t' 1, (0) = ?/(1 -? ?) ,  i t  (1) = t ,  . E d x  = U / ( L E . ) ;  ( 1 . 7 )  
0 

LPono [~ 1to (1.8) 
"c B - -  , ~t = ~i/~te, ~ = - 4 , T l e l n o L .  ~te/:' 0 

For the approximations (1.2), (1.3) we have, respectively, 

S(~) = (~ -- I)20(~ -- I), A = I/LpoAB ~, ~ -= Eo/p,B; (1.9) 

S(~) = exp  ( - -1 /~ ) ,  A .----- I /LpoC. , .  v = E o / p o D .  ( 1 . 1 0 )  

If p and q are constant, system (1.6) is autonomic. The position of its equilibrium 
points is determined by the equations 

= o ,  -x- .To 
]z = t / (I  + ~t). E :/: 0, 
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from whxch we ootain the re• 

[ ,o ] ('-~P-~)AS(vE/P) + ~" ~ (l + ~t)~ lY ~ = O, ( 1 . 1 1 )  

r e l a t i n g  t h e  ~ o ~ a l  c u r r e n ~  3o ~o t h e  v a l u e  o f  . t he  i n t e n s i t y  E = E ~ a~ t h e  s i n g u l a r  p o i n t  O .  
Equation (i.ii) for positive values of J, and E ~ is always uniquely solvable. Therefore, 
we can formulate the inverse problem by specifying either E" or Je. The latter possibility 
was noted above. However, in this case difficulties arise in solving Eq. (i.ii) to determine 
the root E e - Ee(Jo) and in the subsequent analytic investigation of the problem. In the 
first case the root Jo(E e) is found from the solution of the quadratic equation. This par- 
ticular formulation of the problem will be considered below. 

We shall assume that the value E ~ at the singular point 0 is always equal to unity. 
This means that as the characteristic intensity Ee of the problem we choose the intensity of 
the electric field at the point O. 

We fix some numerical quantities for the characteristic values of the variables (1.5) 
and, using these, calculate TR, u, ~, A. If we specify other values of the dimensional vari- 
ables -- the intensity Eet of the electric field at the singular point 0 and the pressure px 
of the gas -- and denote by ~ the ratio Eox/(Eop), (px/po = p), then T* R = xR/~, u ~ = ~po, 

= ~, = A/p. The characteristic value of the current density varies in proportion to 
E. 

Now we formulate the inverse problem, which will be investigated below: for given values 
of ~, p, and q, find the solution of the system of equations 

dx 

dj-; = ,OJeS + [q/J  - -  j e  - -  > 0; ( 1 . 12 )  
dE l i~ - -  t/(1 + ~t) 

- d], - -  6 E  OJ]e S (%'eE) + [q/S~ - -  ]'e (1 - -  ]e ) / ( ,E2) ]  ; ( 1 . 1 3 )  

e 'i t-~-~ ep co -- (i.14) 
= T--~-J o' 6 -- |tOTRp' Jo'r.~A; 

1 /  
(':8) 

so = (1 + + v 

1 

(i.15) 

satisfying the boundary conditions 

x[~/(i-~-?)l----O, x ( J ) = l .  ( 1 . 1 6 )  

We shall seek a solution in Ct[7/(l + y), i]. 

Equation (1.13) has singular points: the nodes A(0, 0) and B(I, 0) and the saddle point 
011/(1 + U), i] (Fig. i). In a neighborhood of the saddle point O the system (1.12), (1.13) 
reduces to the equations 

dx ~ dy = a2lz 

dz --- allZ 4- al~Y' dz allZ q- al2Y~ 

z = ] ~ - - i l ( l + l x ) ,  y== E - - i ,  O<y<<l, J z J<< l ,  (1.17) 

I I--~ =o)Sz_~_(l 2 t 
all  = f..OS O (eV) -~- I x t -r" ~X' al~ + ~)~' a z l =  "6"' 

where the quantities So(~) and S,(~) are the coefficients of the Taylor's series expansion 
of the function S(~E) in a neighborhood of the point E = i. 

The eigenvalues of the second equation in (1.17) are 

The behavior of the integral curves in the phase plane (Je, E) in a neighborhood of the 
point O is described by the integral 

- - y  = K z - - - - y  K = c o n s t .  ( 1 . 1 8 )  
a21 . a~l 

The integral curves entering and leaving the point O will be called separatrices. Their 
behavior is shown in Fig. i. The points of intersection of the separatrices with the straight 
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lines Je = 7/(I + 7) and Je = 1 for E > 1 will be denoted by EK and EA, respectively. The 
region which lies above a separatrlx and in whlch we shall hereafter study the behavior of 
the integral curves will be denoted by G. The subregion 7/(1 + 7) -- i/(i + ~)~ z <0 will 
be called the cathode subregion, and 0~z~.~/(l + U) will be called the anode subregion. 
We denote by Ein t the point on the line Je = i/(i + p) through which passes the integral 
curve satisfying the conditions of the boundary-value problem (i.12)-(i.16). We shall call 
this the true integral curve. We shall denote by Ylnt the difference Ein t -- i = Yint. All 
nonessential constants will be denoted below by a single letter C. 

2. We note that in the boundary-value problem (I.12)-(i.16), Eq. (1.13) is integrated 
independently of Eq. (1.12). The true curves were found in the following manner. The origin 
of the x axis was situated at the point (I/(i + ~), En). This can be done, since system 
(i.12), (1.13) is invariant with respect to a displacement of x. We took an arbitrary E n > i. 
From the point (l(l + ~)! E~) an integral curve emanates in both directions. At the same 
time, we calculated x = |XKI + x A (and also the poCential drop [A~] by integrating E -- En). 
Here x K is the value of x obtained in the cathode region in the integration of system (i.12), 
(1.13), and x A is obtained in the anode region. For the true curve, x m I. A characteristic 
feature of the problem is the presence of large gradients in a neighborhood of the saddle 
point O and large number of independent parameters on which the behavior of the integral curves 
largely depends. Numerical calculation showed that over a broad range of variation of the 
parameters the quantity Yinc in practically equal to zero. An analytic estimate of the 
quantity Yint will be given below. Since the integral curves in a neighborhood of the point 
0 behave like hyperbolas, this means that the calculation of the volt--ampere characteristics 
can be carried out on the basis of the separatrices. 

In the calculations we took Eo/po = 1 V.cm-l.mm Hg -~, neo = I0 la cm -s p L = l0 cm as the 
characteristic values of the dimensional parameters. The value of e is restricted to the 
interval of variation (3, 10). For this type of variation of ~, the electron distribution 
function is optimal for the excitation of oscillatory levels of nitrogen molecules [I, 2]. 

By level curves we shall mean the curves 

' [~ --- ]=C, ~>0. (2.1) ~ j , S  (evE) ~- J~ - -  j~ (IF L2-/e) OE 
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They pass through the points A and B, and for C > 0 they lie above the curve (2.1), 
which is intersected by the integral curves with infinite derivatives. 

The most interesting case for study is the case of nonlndependent discharge, when the 
ionization of the gas volume is eseentially due to the external ionizer and not to the 
characteristic multiplication of the electrons in the electric field. This means that there 
exists a value E = Elm p > 1 such that above this value we may assume that the impact ionlza- 

- -  

tion begins to have h substantial effect on the behavior of the integral curves of the prob- 
lem (1.12)-(1.16). (We shall determine Eimp from the condition that the first term in the 
demonlnator of Eq. (i.13) is equal to the difference of the other two.)As E increases, the 
angle of inclination of the integral curves in G will increase in absolute value, and when 
we reach E = 1/(9r it satisfies the equation IdE/dje! ~ i/~(i- 9a~ a +~29'~a ing~) if 
Yint~ 1. The width of Eimp is Elm p -- i/(~)~-~/2. If e ~ i, then in the region E~Eim p 
the demoninator of (i.13) baglns to increase rapidly, while the angle of inclination of the 
integral curves begins to decrease. The behavior of the integral curves in this region de- 
pends weakly on their behavior in the region 1 < E < Elm p. In the cathode emission layer, 
as Je § y/(l + y) the value of the demonlnator decreases again. As a result of this there 
is a "burst" of the quantity E. We draw the s~raight line z = z K in the cathode region and 
denote by X K the value of x reached by the tru e curve in the region G when z~ ZK. Further- 
more, we take q, > qa and the straight line lying ~o the left of the point of intersection 
of the true curves corresponding to q, and qa~ The point of intersection lles at a distance 
of the order of (i + ~-~/a)r162 -- 1 -- ~ in 9~ from the straight line z = 0. Then by 
using estimates of the right slde~f Eq. (~.12) and a qualitative analysis of the behavior 
of the integral curves of Eq. (l.l~find that XK(q2 ) > XK(q~ ). As X K increases, so 
will Yint- 

The situation of the anode depends on whether the true curve reaches the value of Eimp. 
This is so because the width of the anode region is equal to ~/(I + ~) << i. If 1 < E < Eimp, 
then the curves x = X(je) differ from curve 1 of Fig. 2 in a neighborhood of the anode by a 
value • and can be approximated by the lines • -- ~/(I + ~)] = x -- x A. 

Figures 1-3 show the calculation for the true curves for various values of r and q. 
Figure 4 shows the variation of Yint as a function of ~ and q (q~ i0-4). Calculations 
showed that it is exponential in nature. The behavior of the solutions of the boundary- 
value problem (1.12)-(1.16) in the physical plane when ~ = 4, 5, 10 and q = 10 -s, 10 -4 is 
shown in Fig. 5. It should be no~ed that ~he term describing the process of recombination 
in the region E > Elm p has a local maximum. The region (Y/(l + Y), i/(I + U)) in the phase 
plane can be subdivided into zones, and in each zone we can distinguish the physical pro- 
cesses which are the principal sources of the generation of electric current. In zone 3, 
adjacent to the cathode, the principal role is played by impact ionization. The electrons 
knocked out of the cathode by the ions are multiplied in avalanche fashion by the dlstribu- 
tion functions (1.9), (i.i0), respectively. In the transition zone 2, equally important 
roles are played by impact ionization, ionizatlon, and (depending on the value of ~) re- 
combination. To zone 1 we assign the zone in which the impact ionization plays no role. 
In a small neighborhood of the point 0 we can distinguish a region Eint~E < E L in which a 
solutionls described by the system (1.17) and recombination and ionization play equally im- 
portant roles. For sufficiently small c there exists in zone 1 a region, adjacent ~o zone 2, 
in which ionization plays the dominant role. The widths of zones 1 and 2 will be denoted by 
z: and Zim p. They will be defined below; they correspond to E = 1/(~) and Elm p. In what 
follows, we assume that Iz~I << i, IZimpl << i. 

3. Over a broad range of variation of the parameters of the problem, calculations car- 
ried out by using the functions (1.9), (I.i0) yield results which are in good agreement. How- 
ever, the special features of the behavior of the Integral curves can be most clearly seen in 
the case (1.9), since it is more amenable to mathematical investigation. 

Using the variable z, we represent Eq. (1.13) in the form 

dlf t z 
qE E -1  -]-[l--~P' z.~_~_ z ~'] ~--- Q(Z' E). dz 5 

The differential equation 

(3. i )  
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d~ t ~ R (z, E~ 
dz = - ~  co + q l ;  ~ - 1  = , ( 3 . 2 )  

t +'--~t L's ( w E )  o 

will be called the accompanying equation of (3.1). 

In the case (1.9) its general solution has the form 

z ~ Ii~'(n /(~))3 ( ' 

The integral curves (3.3) will be called the aecompanylng integral curves. 

We consider first =he case of the anode region 0 ~ z ~ ~/(i + ~). In thls region the 
inequality 

Q(z, E) ,~ R(z, E) (3 .4 )  

is satisfied. 

We draw the corresponding curve from the point z = 0, Ein t = 1 + Yin=" It will pass 
above the true curve and the separatrix. The constant C = C A in (3.3) has the form 

In(l-l-'7/int) q (t ' Yint)"" (3 .5 )  

We assume first of all that the corresponding curve does not take on the value Elm p. 
Using (3.3), (3.5), we can show =hat the inequality 

E 

z2 ~q(l-~-!lint)~ [ lf'a --l]--[r , 
~ ~ . (1 -i- -~/int ) e . 1  (1-i~ ~)" 

is satisfied. 
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From this inequality we find 

E<( tq -Yin t )  kA T (l--kA) e4-(l_~_yint)?q 

From this, in particular when Yint << i, we obtain an estimate for the intensity at the 
anode : 

E A < ~ +  1--7 § 6 q' 

In the case when the accompanying curve enters the region g > Elm p, i.e., when impact 
ionization is connected with the formation of the solution, E A is foun~ from the inequality 

~,'~o~ E ~ ( E x _  t 3 
2j G, . . e(i+~)2-~2-~. (3.7) 

The value of E A obtained from (3.7) sat is f ies (3.6). Numerical calculations have com- 
pletely confirmed the va l i d i t y  of estimate (3.6). The difference between the r ight  and l e f t  
sides reaches the order of 0.04. The reason for this level of accuracy is that the anode 
region is quite narrow. 

Now let us consider the case of the cathode region z < 0. The accompanying curve passes 
through the point 0 when C = 0. For ~//~ > (1 --~)//2, the accompanying curve passes above 
the line of infinite derivatives. The expression in square brackets in (3.1) is negative when 
z > (~ -- I)/(~ + i). For these values of z, inequality (3.4) changes sign. This means that 
the accompanying curve lies below the separatrix and the true curve. It intersects the 
straight line E = i/(~) at the point 

In the range of ~ values under investigation we have [z~] << I, Since /~ ~ i0 -s. The 
separatrix and the true curve intersect the straight line E = Eimp inside the interval (z, = 
0). It can be shown that in the case under investigation, the difference between z~ and the 
true value of z when Yimp << i is of the order of (~/~) in 9E. Numerical calculations showed 
that when E ~ 3 and q ~> 10-', it does not exceed 10%. 

Let the symbol k represent an ordinal number. We define the quantity ~ by means of the 
r elation 

i ~ q =kk~(~'), k~(l)=O, k~(oo)= ( l+t!)  -~. (3.9) 
0 

The number k is taken to be so large that, Ko a sufficient degree of accuracy, ~he last 
two terms in the denomina=or of Eq. (3.2) could be disregarded in comparison with the first 
~erm. When k = i, we have ~ -----Elm p. It can be seen that ~ satisfies the inequality 

V% w v~ ---J/" (3. i0 )  
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Now we substitute I into the integral (3.3) and obtain the value Z at which the accom- 
panying curve (3.3) intersects the straight line E = ~. We require that IZI << i, Just as in 
the case of z,. This condition will be satisfied if 

/8l~2 \:/~ 4m 

, 9. iO ~''2 (3. ll) 

The separatrix and the true curve intersect the straight line E = ~ inside the interval 
(Z, 0). 

From estimates (3.11) it can be seen that the quantity kk, may be taken to be fairly 
large, such that in Eq. (3.2), when E > .~, the principal role will be played by the first 
term in the denominator. In particular, when q = l, e ~ 3, ka = 2, we have kk, ~ 23, and 

I zl < 1/30. 
Now we consider the differential equation 

dE i it -- I/U + ~) (3.12) 

v e m]e~ (E-- i /(w)) 2" 

It can be integrated: 

i . 
: i + ~j i2 ] ~- C. (3.13) 

We draw two integral curves (3.13) through the points (Z, ~) and (0,~). 

For Je -- i/(i + U) = z + 0, integral (3.13) takes the form 

z 2 z 3 

Through the point (Z,~) there will pass a curve (3.13) with the constant C = C~: 

and through the point (0, ~) a curve with constant C = Co: 

The s e p a r a t r i x  and  t h e  t r u e  c u r v e  a r e  f o u n d  ~o l i e  b e t w e e n  t h e  c u r v e s  ( 3 . 1 3 )  and  t h e  c o n -  
s t a n t  values C, and Co. We denote b y  EK~ , EKo , and E c the points of intersection of the inte- 
gral curves (3.13) with Cx and Co and the point of intersection of the separatrix with the 
straight line Je = 7/(i + y). The following inequalities obviously hold: EK~ < Ec < EK < EKo. 
Since the angle of inclination of the integral curves is strictly negative, it follows that 
EKx , EKo , EK, E c > i/ge. The values of EK, and EKo are determined from the equations 
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] i  �84 ) 
v 4 4 v~i In t -k----} 1 " t 

x ~ + g ' - V ~ - = 4 %  i v l - t -~  i + t ~  T 4  6 C ~ §  ~ 

v K i = E ~ i - -  t 1 i = O , l .  
v~' % --  &ov%V 

, 

(3.14) 

When conditions (3.11) are satisfied, the last terms on the right sides of Eq. (3.14) 
are much smaller than the first terms. This means that v c and v K coincide, to a high degree 
of accuracy, with VKo and VKl and are the solution of the equation 

4 v 3 
u 4 + ~- ~ = 4% [? -- I n ? -- 11. 

It is very laborious to find its solution in general form. We shall confine ourselves to the 
asymptotic representation. If X[Y -- in y -- 1] = k3/(4.34v~E4), then E K can be represented 
in the form 

EK ~ -i- 4~ (? - -  In ? - -  1) - -  t..~_ -k 4 r �9 ( 3 . 1 5 )  
ov~ 6v2e" V 4X(? --  In 7 -- t 

The number ka > i shows what fraction of t h e  first term in the expansion of g K is represented 
by the second term. When ~ = 3, q = 1, we have EK.asymp --~40.45, and when r -- i0, q = i, we 
have E K asymp N_ 15.57. 

Using the relations obtained above, we estimate [XK[ as a function of the values of 
parameters (1.14). It should be noted that the value of [XKI reached by the true solution 
is less than the value of IX[ reached by the accompanying solution (3.3) with C = 0 and the 
curve (3.13) which Joins it at the point (Z, ~), since in the phase plane it lies below the 
true curve and ~E/~C > 0 for the level curves in (2.1). The intensity taken on by the curve 
(3.13) with C -- C~ at the point Je= 1/2 will be denoted by E,. Now we estimate XK: 

: .  z ~, zK.  l n ( ~ ]  

t Y l Y  ' XKI = ,, § § , § ~< coy%" [E, - t/(va)]" 
'~/'(l+y)--bt/(l+~) z, Z z 1 

In 1 + (1 -~- >) Z 
t -l- (1 -~- p) z, _< 

kk I 

, /1/(t -F ~) 4- z,] , 
V L ' 2 2  t l nE  ]"]"1 
- - % = =  = : .  ~< ( I n 2 + l n y ) % 6 - i -  T 

EZdz 
q" (E ~ - 1) 
:~ 

- [ - ( i -  v%'2) (zl - -Z)~-  ]/r 2"-6 I( ~ - - i ) +  In( i - - l ) -  In \ - - ~ ]  -- . 
/ 

1 6~]ZK E(ZK)--t=(t-" I*)'~ E(ZK)<Ea. 

(3 .16 )  

The integrals in square brackets in (3.16) are estimated on the basis of the accompanying 
solutlon. In the proof of inequalities (3.16) we made use of formulas (3.13), (3.11), (3.8), 
and (3.3). From (3.16) it can be seen that IXKI reaches a value of the order of unity if 
[ZK[ ~ exp (--i//~). Here E(Z K) -l - a-I/2 exp (-l/Z). 

Let us consider the case in which the process of impact ionization is described by the 
function (i.i0). All the relations derived above for (1.9) can be derived in an analogous 
manner for the function S defined by (i.i0). Therefore, we shall not repeat the calculation 
in detail. The intensity ~, as before, is found from the condition that the first term in 
the denominator of Eq. (3.2) is k times as large as the difference of the two remaining terms: 

1 
- -  VE  111 [], 'k I (r k > / I .  

The value of ~ when k = 1 will be denoted by Elm p. The Value of E K is found from the 
equation 

EK 

m E e x p  - - ~ ,  d E = T  [ Y - l n Y - l l "  
Ey 
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After substituting E = i/(~et) 

fK 

. t3 d t  = - - - g ~ - I ? - - l n 7 - - 1 1 ,  tK= v~@x, r = l n  ~ . ( 3 . 1 7 )  

T 

When e~ 3 and q~ i, we have T _> 7. The asymptotic formula (3.17) is no longer valid as 
q § 0, since the right side of (3.17) becomes small. 

A comparison of the asymptotic formulas with the numerical calculations for q ~ i0 -s 
indicated good agreement. For e = 3 and q = I, e.g., 

EK.asymp---- 41.92, EK.num =~42.59; for e = i0 and q = 1 

EK.asymp----- 16.93, EK.nu m ~---17.01; for e = 3 and q = 10 -z 

EK.asymp-- 23.02, EK.nu m ~ 22.51; for e = 3 and q = 10 -4 

EK~ --~--- 19.5 E ='~17.6 ymp , K. num �9 

Relations (3.15) and (3.17) obtained above are in good agreement with the analogous 
approximate formulas in [i, 4, 5]. 

4. We shall investigate the behavior of the solutions of the system (1.12)-(1.16) in 
the interval (ZK, --ZK = ZL), which includes the point O, with the aid of the Eqs. (1.17). 
In the case of a nonindependent discharge in the range r = 3-10, the behavior of the solution 
in the region Eint~ E ~ EL, in the first approximation, is independent of the nature of the 
function S. Therefore, all the results obtained will be valid both for (1.9) and for (i.i0). 

The value of the constant in (1.18) is equal to in K = (I -- XA/I K) in Yint' We intro- 
duce the new variables ~ = z/Yin t, ~ = Y/Yint' 

If we introduce the parameter t, we can represent the integral (1.18) in the form 

_ ~ - - ~_ "2, 7 = t ~-~/~X. (4. l) 

Making use of (1.17) and (4.1), we have 

( (~/~K)-I {XK~-XK--XK<O, t ~ l ,  • ' t - -  (~x_t/}~ir t" " " ~ dt ~ 
~' ("n - ~.~) t -- ( %  - ~oK) t A / ~ r  x A  = x ~  - -  X ,~  > O, 0 < t <~ 1. 

W h e n  q ~ 1 ,  ~ > a ,  t h e  q u a n t i t y  a ~ ,  - -  i i = --(aa~a,a)/h i ~ ~-~/a ( i  = A ,  K ) .  T h e  q u a n t i t y  XK 
can be represented for large t as 

XK ~- CK )'KM ;'A~ "~ - -  - - t ,  t>>t, %1%~ aI~"~I (4.2) 

and in an analogous manner, we can represent x A for a small t as 

IA• ~A• 
- -  t, O < t < < l .  (4 .3)  

If • is not very large, we can disregard the first terms of (4.2) and (4.3) (as q § 0~ 
• -). Then using (4.1), we obtain 

a,,  (s - -  }'K) e x p  ~ } %, (}'A - -  )*g) exp  ~ 1. 

From this it follows that hAX A ~ hKX K. If h A ~ I~KI and IXKI << 1, then ~A - I~K] " i/2. 

This result is confirmed by numerical calculations. For Yint and [A~] (the potential drop 
across (ZK, -ZK)) , we shall have 

From this it can be seen that the value of z K must be so chosen as to make it possible 
tO disregard CA~]. When q -> 0, the values of Yint and [A~p] increase. The value of IXKI 
also increases. These results and the results of the qualitative analysis of the solutions 
of system (1.12), (1.13) and estimates (3.16) agree with each other and with the results of 
the numerical calculations. 
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The quantity Yint<~. 1.5 exp (--I/(• 2/~))//~. For small values of z K the volt-ampere 
characteristics depend weakly on =he behavior of the solution of the problem (1.12)-(1,16) in 
the interval (ZK, --ZK). An analogous conclusion, based on the results of numerical calcula- 
tions, was drawn in [6]. 

in real lasers the neutral gas is in motion. As a result of this, there is a convective 
removal of the Joule heat and a viscous boundary layer is formed in the regions near the elec- 
trodes. The density of the gas can no longer be considered constant. This means that the 
calculation of the parameters of the flow in the electric field must be carried out on the 
basis of a simultaneous solution of the gasdynamics equations and the system (I.i) (with the 
pressure p replaced by the density p(x)). 

This study may be regarded as one of the steps aimed at the investigation of the proper- 
ties of system (i.i) with variable density and the calculatlon of the electrical discharge in 
real electroionizatlon lasers. 
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A PARAXIAL MODEL FOR THE GROWTH OF AN EXTERNALLY MAINTAINED DISCHARGE 

INFLUENCED BY ITS OWN MAGNETIC FIELD 

G. V. Gadiyak and V. A. Shveigert UDC 537.633.9 

A high-power electrical-ionization laser system employing compressed gas involves a high 
discharge power and large geometrical dimensions. This increases the magnetic field of the 
spatial discharge, and this begins to influence the motion of the electrons responsible for 
the ionization. When the Larmor radius for the electrons becomes comparable with the trans- 
verse dimensions of the discharge, the distribution of the ionization losses and of the elec- 
tron density will be substantially inhomogeneous [1]. 

Here we consider an approximate model for a gas discharge initiated by a high-power rela- 
tivistic electron beam. An analytic expression for the spatial distribution of the energy 
absorbed in the discharge is derived for the steady-state case. 

A two-dimensional problem can be formulated (Fig. i) for a typical geometry of the 
spatial discharge in a laser in which the longitudinal dimension is much larger than the 
transverse dimension d, I << Zo (d, distance between electrodes; Z, width of the discharge, 
which is determined by the width of the beam; and lo, length of the discharge). A rela- 
tivlstic electron beam with zero velocity spread is injected along the z axis from the cathode, 
with electron energy U b and current density Jb' A potential difference Uo is applied to the 
electrodes and there is a gas at pressure Po (arm) in the space between them. 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 
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